Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1344938

ABSTRACT

Adaptation of organisms to stressors is coordinated by the hypothalamic-pituitary-adrenal axis (HPA), which involves glucocorticoids (GCs) and glucocorticoid receptors (GRs). Although the effects of GCs are well characterized, their impact on brain adaptation to hypoxia/ischemia is still understudied. The brain is not only the most susceptible to hypoxic injury, but also vulnerable to GC-induced damage, which makes studying the mechanisms of brain hypoxic tolerance and resistance to stress-related elevation of GCs of great importance. Cross-talk between the molecular mechanisms activated in neuronal cells by hypoxia and GCs provides a platform for developing the most effective and safe means for prevention and treatment of hypoxia-induced brain damage, including hypoxic pre- and post-conditioning. Taking into account that hypoxia- and GC-induced reprogramming significantly affects the development of organisms during embryogenesis, studies of the effects of prenatal and neonatal hypoxia on health in later life are of particular interest. This mini review discusses the accumulated data on the dynamics of the HPA activation in injurious and non-injurious hypoxia, the role of the brain GRs in these processes, interaction of GCs and hypoxia-inducible factor HIF-1, as well as cross-talk between GC and hypoxic signaling. It also identifies underdeveloped areas and suggests directions for further prospective studies.


Subject(s)
Disease Resistance , Glucocorticoids/metabolism , Hypothalamo-Hypophyseal System/metabolism , Hypoxia, Brain/metabolism , Ischemic Preconditioning , Pituitary-Adrenal System/metabolism , Signal Transduction , Animals , Humans , Hypothalamo-Hypophyseal System/pathology , Hypoxia, Brain/prevention & control , Pituitary-Adrenal System/pathology
2.
Reprod Sci ; 28(10): 2735-2742, 2021 10.
Article in English | MEDLINE | ID: covidwho-1014275

ABSTRACT

Coronavirus disease 2019 (COVID-19), which resulted from the pandemic outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes a massive inflammatory cytokine storm leading to multi-organ damage including that of the brain and testes. While the lungs, heart, and brain are identified as the main targets of SARS-CoV-2-mediated pathogenesis, reports on its testicular infections have been a subject of debate. The brain and testes are physiologically synchronized by the action of gonadotropins and sex steroid hormones. Though the evidence for the presence of the viral particles in the testicular biopsies and semen samples from COVID-19 patients are highly limited, the occurrence of testicular pathology due to abrupt inflammatory responses and hyperthermia has incresingly been evident. The reduced level of testosterone production in COVID-19 is associated with altered secretion of gonadotropins. Moreover, hypothalamic pathology which results from SARS-CoV-2 infection of the brain is also evident in COVID-19 cases. This article revisits and supports the key reports on testicular abnormalities and pathological signatures in the hypothalamus of COVID-19 patients and emphasizes that testicular pathology resulting from inflammation and oxidative stress might lead to infertility in a significant portion of COVID-19 survivors. Further investigations are required to monitor the reproductive health parameters and HPG axis abnormalities related to secondary pathological complications in COVID-19 patients and survivors.


Subject(s)
COVID-19/epidemiology , Fertility , Hypothalamus/pathology , Infertility, Male/epidemiology , SARS-CoV-2/pathogenicity , Testis/pathology , Animals , Atrophy , COVID-19/diagnosis , COVID-19/virology , Gonadotropins/metabolism , Host-Pathogen Interactions , Humans , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/pathology , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamo-Hypophyseal System/virology , Hypothalamus/metabolism , Hypothalamus/physiopathology , Hypothalamus/virology , Incidence , Infertility, Male/pathology , Infertility, Male/physiopathology , Infertility, Male/virology , Male , Testis/metabolism , Testis/physiopathology , Testis/virology , Testosterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL